

Lightweight Optical Systems (LWOS)

Superior Technology with a System Level Point-of-View®

Qualification of Materials for Low Cost Kill Vehicles Phase I SBIR for Adam Aberle

Dimensionally Stable SLMS™

10 kHz **1**st Fundamental SiC-SLMS™

Dr. Bill Goodman LWOS Business Lead Schafer Corporation 2309 Renard Place SE Albuquerque, NM 87106

505.338.2865

wgoodman@schaferalb.com

C/SiC

Mirror Technology Days August 2005

Company Information

- Lightweight Optical Systems (LWOS) & Laboratory Based in Albuquerque, NM
- Employees: 380
- 2004 Sales of \$78M, 2005 Sales Projected at \$90M
- Capabilities Lightweight Optical Systems, Optical Coatings, EO & IR
 Sensors, Advanced Projectiles & Seekers, Lasers and Other DE, Laser Radar

Schafer Corporation Has A Broad Spectrum of Capabilities That Can Address The Needs of LCKV and Other Programs

Contract Information

- Contract Executed March 4, 2005
- Contracting Agency
 - ⇒ COR is U.S Army Space and Missile Defense Technical Center, Mr. Adam Aberle
 - ⇒ Missile Defense Agency CTV, Mr. Dale McNabb
- Topic MDA04-112, "Ballistic Missile Innovative Electro-Optic Products" sponsored by MDA/AS
- Principal Investigator for Schafer is Dr. Bill Goodman
 - ⇒ wgoodman@schaferalb.com, 505-338-2865 Direct, 505-400-8169 Cell
- Technical Monitor for SMDC is Mr. Adam Aberle
 - ⇒ US Army Space and Missile Defense Technical Center Interceptors Division Engineer, LADAR Technology SMDC-RD-TC-MT-KC PO BOX 1500

Huntsville, AL 35807-3801

Phone: 256-955-5478

Fax: 256-955-3641/3508

email: adam.aberle@smdc.army.mil

Schedule/Deliverables

- 3-inch diameter SLMS™ and SiC-SLMS™ plano mirrors
 - \Rightarrow VIS/IR Performance, Figure of $\lambda_{\text{HeNe}}/\text{10 PV}$, Surface roughness of 10 Å RMS
 - ⇒ Solid Models of Mass/Frequency, Laser Vibrometer & Mass Measurements
- Schafer designed coating
- Mirror Flash X-Ray testing

						arter		2nd C	Quarter		3rd Q	uarter	
ID	0	Task Name	Duration	Start	Finish	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
1		Materials for LCKV	115 days	Tue 3/8/05	Mon 8/15/05							$\overline{}$	
2		Kick-Off Briefing	0 days	Tue 3/8/05	Tue 3/8/05		3/8	3					
3		Requirements Definition with Raytheon	1 wk	Tue 3/8/05	Mon 3/14/05								
4		Task 1: Hardware Production	95 days	Tue 3/15/05	Mon 7/25/05								
5	1	Produce SLMS & SiC-SLMS Substrate Cores	4 wks	Tue 3/15/05	Mon 4/11/05								
6	1	Precision Machine Substrate Cores	3 wks	Tue 4/12/05	Mon 5/2/05								
7		Deposit Substrate Facesheets	2 wks	Tue 5/3/05	Mon 5/16/05								
8	111	Produce C/SiC Greenbodies	4 wks	Tue 3/15/05	Mon 4/11/05								
9		Infiltrate C/SiC	1 wk	Tue 4/12/05	Mon 4/18/05			<u> </u>	_				
10		Precison Grind C/SiC	3 wks	Tue 4/19/05	Mon 5/9/05								
11		Figure and Finish Substrates	3 wks	Tue 5/17/05	Mon 6/6/05								
12		Inspect Mirror Figure/Finish, Vibrometry	2 wks	Tue 6/7/05	Mon 6/20/05								
13		Deliver Substrates to Surface Optics for Coating	4 wks	Tue 6/21/05	Mon 7/18/05								
14		Perform Metrology	1 wk	Tue 7/19/05	Mon 7/25/05							1	
15	111	Task 2: Materials Properties Database	4 wks	Tue 3/15/05	Mon 4/11/05	1							
16	1	Task 3: Structural Predictions	3 wks	Wed 5/11/05	Tue 5/31/05								
17		Task 4: Flash X-ray tests	2 wks	Tue 7/26/05	Mon 8/8/05								
18		Final Report and Deliverables	1 wk	Tue 8/9/05	Mon 8/15/05								

SLMS™ and SiC-SLMS™ Mirror Systems

Foam Core Optics with a Continuous Shell

Polycrystalline Silicon or Beta-Silicon Carbide Closeout 0.25-1.27 mm typical (0.01-0.05 inch)

- Foam is Open-Cell, 70-95% Porosity
- Pore Size: 0.40 4.0 per mm (10-100 per inch)
- CNC machined to virtually any shape to ± 50 μm (0.002 inch)

Design Flexibility with Large Manufacturing Basis

SLMSTM & SiC-SLMSTM **Manufacturing**

Polishing: Conventional or 2-Step Deterministic Polishing **Metrology: Interferometry, Computer Generated Hologram Multiple Vendors Qualified**

Monolithic Substrates to 65 cm diameter

Multiple Coaters Qualified

SiC clad SiC Foam

Silicon Encapsulated

Cost Less Than Beryllium – Polishes Like Glass – ISO9001 Processes Can Offer CPFF or FFP Contracting

SiC-SLMS™ Fast Steering Mirrors

- SiC-SLMS™ Steering Mirror
- Lightweight, High First Frequency SiC-SLMS™ substrate

1) SiC clad SiC Foam

2) Silicon Encapsulated

3) Polished Mirror

4) Coated Mirror

- 96% Clear Aperture (4.85 inch)
- Figure: $\lambda/77$ rms HeNe
- Finish: 3.8 Å rms
- Radius Edge Finish: 4.7 μin
- Scratch/Dig better than 20/10
- 1st Fundamental: 9.6 kHz
- Weight: <0.47 pound

Laser Tested May 11, 2005 – Excellent Performance!

Material Properties

Room Temperature Property:	Density	Young's	Specific	Tensile	Specific	Thermal	Thermal	Specific	Thermal	Steady State	Transient	Poisson's	Surface
		Modulus	Stiffness	Strength	Strength	Expansion	Conductivity	Heat	Diffusivity	Distortion	Distortion	Ratio	Finish
Units:	kg/m³	GPa	MPa-m³/kg	Mpa	MPa-m³/kg	10 ⁶ /K	WmK	j/kg-K	10 ⁶ /m²/s	H m/ W	s/m²-K	arbitrary	nm
Preferred Value:	Small	Large	Large	Large	Large	Small	Large	Large	Large	Small	Small		Small
PRESENT SOTA													
Fused Silica	2190	73	33		0.00	0.5	1.4	750	0.85	0.36	0.59		10
ULE Fused Silica	2210	67	30		0.00	0.015	1.3	770	0.76	0.01	0.02		10
Zerodur	2530	92	36		0.00	-0.09	1.6	810	0.78	-0.06	-0.12		15
Beryllium I-70 Optical	1850	287	155	237	0.13	11.3	216	1920	60.81	0.05	0.19	0.25	15
SCHAFER TECHNOLOGIES													
Foam Silicon SLVS TM Skin	2330	130	56	120	0.05	25	148	750	84.69	0.02	0.03	0.24	5
Foam Beta-SiC SLMS™ Skin	3210	460	143	470	0.15	22	380	640	184.97	0.01	0.01	0.21	5
Web Based C/SiC	2655	249	94	150	0.06	25	121	800	56.97	0.02	0.04	0.24	10 to 25

SLMS[™] Has Distortion Parameters Like Low Expansion Glasses
With More Than 2 times the Specific Stiffness (Equates to Lower Mass)
SiC-SLMS[™] Has Superior Thermal Performance Than Be
With Similar Structural Properties
Schafer Has Invested IR&D Funds to Verify Key Properties

Si Foam Microstrain vs T

Cyclic Testing Performed by PMIC

Foam Microstrain Same As Bulk Material

CTE of Bulk Si and Si Foam

Near Perfect Agreement Between Bulk and Foam CTE

Foam and Bulk Material Behave The Same (2.5 ppm/K at 295 K)
Near-Zero CTE from 25-125 K – Premium for Cryo Telescopes

β-SiC Microstrain vs T

Cyclic Testing Performed by PMIC

Foam Microstrain Same As Bulk Material

β-SiC Instantaneous CTE

Foam and Bulk Material Behave The Same (2.2 ppm/K at 295 K)
Zero CTE at 30 K – Premium for Cryo Telescopes

Structural Efficiency

Be, ULE, Zerodur

Schafer Technology

Mirror	1st Frequency	Mass	Areal Density		
	(kHz)	(kg)	(kg/m^2)		
ULE	1.76	0.98	16.1		
Zerodur	1.93	1.12	19.4		
Beryllium	3.98	0.81	13.3		
SLMS	4.29	0.81	13.3		
SiC-SLMS	5.24	0.81	13.3		

SLMS[™] and SiC-SLMS[™] Are Stiffer than Be at Same Mass or Lighter at Same Stiffness

High Precision SLMS™

Figure of Merit	Specified	Results Achieved	Achievable
	Value		
Areal Density, kg/m ²	<20	9.8	6
Surface Figure at 80% CA, waves	0.02	0.021	0.005
rms @633 nm			
Surface Figure at 95% CA, waves	N/A	0.027	0.010
rms @633 nm			
Surface Roughness, Å rms	10	4	1
Radius of Curvature	600 mm ±	598.559 ± 0.005	
	0.5%	mm 2-σ	
Surface Quality (Scratch/Dig)	60/40	20/20	10/5

SLMS[™] Achieved or Exceeded ALL Specifications
Optical Quality Suitable For IR Through Extreme UV

C/SiC Telescope

- SLMS™ Primary mirror, single crystal silicon secondary, and C/SiC supporting structure
- C/SiC M10 or M12 screws high tensions of 40,000-50,000 N

High fracture toughness

1/4-80 Threads

1/4-20 Assembly Screw

1/4-20 Threads

25.4 cm Clear Aperture with Total Telescope Mass of 6.4 kg (14 lbs)

Coating in Visible

Coating in LWIR

